High-Efficiency Reliable Stirling Generator for Space Exploration Missions, Phase I

Completed Technology Project (2011 - 2011)

Project Introduction

NASA needs advanced power-conversion technologies to improve the efficiency and reliability of power conversion for space exploration missions. We propose to develop a Stirling generator to meet NASA needs. Our Stirling generator adapts technology we have developed for high-reliability long-life (> 10 years) space-based Stirling-cycle cryocoolers and proprietary compressor and expander technology. Our compressor and expander technology enables near-isothermal compressions and expansions, which allow our Stirling generator to achieve a high percentage of the Carnot thermal efficiency. In Phase I, we will generate a preliminary design of our Stirling generator and project its efficiency. In Phase II, we will build and demonstrate a prototype Stirling generator and deliver the prototype to NASA for functional and environmental testing. In Phase III, we will build and sell Stirling generators for many government and private-sector applications.

Primary U.S. Work Locations and Key Partners

Organizations Performing Work	Role	Туре	Location
Beck Engineering,	Lead	Industry	Port Orchard,
Inc.	Organization		Washington
Glenn Research Center(GRC)	Supporting	NASA	Cleveland,
	Organization	Center	Ohio

High-Efficiency Reliable Stirling Generator for Space Exploration Missions, Phase I

Table of Contents

Project Introduction	
Primary U.S. Work Locations	
and Key Partners	1
Project Transitions	
Organizational Responsibility	2
Project Management	
Technology Maturity (TRL)	2
Technology Areas	3
Target Destinations	

Small Business Innovation Research/Small Business Tech Transfer

High-Efficiency Reliable Stirling Generator for Space Exploration Missions, Phase I

Completed Technology Project (2011 - 2011)

Primary U.S. Work Locations		
Ohio	Washington	

Project Transitions

0

February 2011: Project Start

(

September 2011: Closed out

Closeout Documentation:

• Final Summary Chart(https://techport.nasa.gov/file/138255)

Organizational Responsibility

Responsible Mission Directorate:

Space Technology Mission Directorate (STMD)

Lead Organization:

Beck Engineering, Inc.

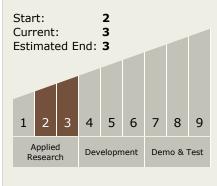
Responsible Program:

Small Business Innovation Research/Small Business Tech Transfer

Project Management

Program Director:

Jason L Kessler


Program Manager:

Carlos Torrez

Principal Investigator:

Douglas S Beck

Technology Maturity (TRL)

Small Business Innovation Research/Small Business Tech Transfer

High-Efficiency Reliable Stirling Generator for Space Exploration Missions, Phase I

Completed Technology Project (2011 - 2011)

Technology Areas

Primary:

- TX03 Aerospace Power and Energy Storage
 - ☐ TX03.3 Power

 Management and

 Distribution
 - □ TX03.3.3 Electrical Power Conversion and Regulation

Target Destinations

The Moon, Mars, Outside the Solar System, The Sun, Earth, Others Inside the Solar System

